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Abstract

Recent research in the field of dialogue
act classification has made significant
progress through integrating discourse-
level context dependencies with deep
learning approaches. This study seeks to
translate the success of such recent work,
conducted on the Switchboard Dialogue
Act Corpus dataset, to the Interaction Dy-
namics Notation dataset developed at the
Stanford Center for Design Research. We
explore the use of a Conditional Ran-
dom Field for this task in addition to a
LSTM RNN. Ultimately, we find the CRF
achieves best performance, setting a new
standard of accuracy on the IDN dataset.

1 Introduction

Designing as a team is one of the most critical
tasks for companies and organizations, yet it is
also a very difficult process to understand given
the multidimensional facets of a design meeting.
Just a few of these facets that have been studied in
the past include gestures (Tang, 1991), questions
(Eris, 2003), emotions (Leifer and Steinert, 2011),
sketching (Van der Lugt, 2005), and team compo-
sition (Kim and Kang, 2003). Continuing efforts
to better understand the complex design process,
the Stanford Center for Design Research has de-
veloped the Interaction Dynamics Notation (IDN)
as a way of capturing the moment to moment in-
terpersonal team dynamics in a design meeting.
The labels for IDN are also known as dialogue acts
(DA), such as those developed for the SWDA and
MRDA datasets. Because IDN labels provide a
tangible method of tracking team interaction dy-
namics during a meeting, they can be used to study
patterns of interaction that distinguish high per-
forming teams from low performing teams.

However, labeling of IDN transcripts is cur-
rently conducted manually and is therefore a long
and labor-intensive process. In this study, we seek
to build a classifier for IDN dialogue acts given
the transcripts from the IDN corpus. Automatic
classification of IDN dialogue acts could enable
the development of systems that analyze and pro-
vide feedback on design team interactions in order
to facilitate more effective teams. Inspired by the
recent performance of discourse-level context de-
pendent models on the SWDA dataset, we explore
two approaches, one based on a Conditional Ran-
dom Field (CRF) and one based on a Long Short-
Term Memory (LSTM) RNN. These models hold
great promise for utilizing discourse-level context
dependencies due to their ability to incorporate se-
quential information into their DA predictions.

2 Related Work

While a great deal of past work has been con-
ducted on the MRDA and SWDA datasets, al-
most none of this work has involved approaches
with CRFs. We first review the only pre-existing
dialogue act classification study with a CRF ap-
proach, proceed to cover the recent research gains
made through discourse-level context dependent
deep learning models, and close by examining past
performance achieved on the IDN corpus.

2.1 Segmentation and Classification of Dialog
Acts Using Conditional Random Fields

Zimmermann (2009) investigates the use of CRFs
for the joint segmentation and classification of di-
alogue acts. He exclusively bases the joint seg-
mentation and classification on features directly
produced from an available speech to text system
and ran his experiments using the MRDA corpus.
The results from the study are not directly appli-
cable to comparisons with other dialogue act clas-
sification systems as the metrics incorporate com-



bined performance on segmentation and classifica-
tion (an instance is only considered correctly clas-
sified if it is both correctly segmented and assigned
the correct dialogue act). However, the concep-
tual simplicity of the model combined with its
power to capture contextual information between
words yielded better performance than previous
joint segmentation and classification approaches.

2.2 Discourse-Level Context Dependent Deep
Learning Models

Kalchbrenner and Blunsom (2013) engineered
a new approach to dialogue act classification
through the implementation of two models work-
ing in conjunction to model the two levels of com-
positionality in a dialogue - the individual sen-
tence level and the discourse overall. Specifically,
sentences in a DA dataset were passed through a
convolutional neural network (CNN) that output
semantic vector representations. These represen-
tations were then fed into the discourse model -
a RNN conditioned on both the current sentence
and the speaker - which created an overview of
the entire dialogue and was therefore able to take
into account a variable number of previous sen-
tences as well as interpersonal dynamics between
speakers in the dialogue. Training this model on
the SWDA dataset with a depth of 2 (predictions
were conditioned on the previous two sentences),
Kalchbrenner and Blunsom (2013) achieved an ac-
curacy of 73.9%.

The success achieved by Kalchbrenner and
Blunsom (2013) inspired a host of other teams to
experiment with similar architectures. One such
approach (Lee and Dernoncourt, 2016) compared
the semantic vector representations produced by
sentence-level CNNs and RNNs for use in feeding
into a two-layer artificial neural network (ANN),
along with the representations and classifications
of a variable number of preceding sentences. With
the use of 200-dimensional GLoVe embeddings
trained on Twitter, the best model achieved an ac-
curacy of 73.1% on the SWDA dataset. CNNs
were found to be more effective than RNNs, as
accuracy fell to 69.6% with RNN representations.

Another such approach (Ji et al., 2016) involved
the combination of a sentence-level LSTM neu-
ral network and a discourse-level latent variable
model (LVM). The incorporation of the LVM al-
lowed the model to treat the relationships between
adjacent sentences as latent variables, while the

RNN learned distributed representations for each
sentence. Because the LVM focused the model
on shallow discourse relations - relations between
sentences that are adjacent - the model does not
possess the flexibility to expand the number of
previous sentences that it incorporates into predic-
tions, but it was still able to achieve 77% accuracy
on the SWDA dataset. This surpassed the 73.9%
mark set by Kalchbrenner and Blunsom (2013).

2.3 Previous Work on the IDN Corpus

One of the first DA classification models for the
IDN corpus (Chan et al., 2015) leveraged a RNN
with Gated Recurrent Units (GRU). In this model,
pre-trained GLoVe embeddings were fed into the
GRU cells, the final hidden states of which were
then used as sentence representations to be fed
into a softmax classifier for multi-class classifica-
tion. The model achieved an accuracy of 64.2%
on the top five most common labels in the IDN
dataset. An important difference to note between
this approach and the approaches detailed in the
previous section is that this model assumes the in-
dependence of sentences, resulting in the loss of
discourse-level context information. As will be
discussed in the next section, discourse-level con-
textual information is critical to distinguish be-
tween labels in the IDN dataset, and thus the in-
corporation of such information was a major area
of opportunity to expand on this work.

The next model implemented for the IDN cor-
pus (Roman, 2017) explored the opportunity de-
tailed above through a bidirectional multi-layer
LSTM. The LSTM operated at the sentence level,
taking in information word-by-word for a given
sentence to make a prediction, but its design also
allowed it to capture discourse-level information
as well. Additionally, the approach augmented the
relatively small IDN dataset with the larger SWDA
dataset by building two classifiers; one classifier
was trained on SWDA data for the standard 42
labels, and the second classifier was trained on
IDN with the features extracted on IDN using the
SWDA classifier. In other words, a model was first
pre-trained on SWDA and then leveraged to pro-
duce output features for training a second model
on IDN. This approach enabled the model to over-
come some of the challenges posed to deep learn-
ing models by the smaller size of the IDN dataset
and achieve a 73% accuracy on the corpus.



3 Dataset

3.1 Corpus Composition
The IDN dataset was collected by the Stanford
Center for Design Research (CDR). To gather this
data, the CDR conducted experiments in which
small groups of two to five people (mostly Stan-
ford students) were assigned tasks requiring de-
sign team collaboration. These tasks ranged from
developing a system to retrieve water from an
underground water supply to improving massive
open online (MOOC) education. The design team
sessions were recorded, transcribed, segmented by
sentence turns, and labeled with IDN dialogue act
types. The dataset is still under development, but
as of this writing it consists of conversations from
23 distinct teams for a total of 7230 sentence turns.

3.2 Notation Description
The IDN notation consists of 12 symbols that map
the flow of conversation in a manner similar to the
way notes of a music staff map the flow a song.
The 12 symbols are as follows: move (M), sup-
port(SU), yesand(Y-A), question(Q), humour(H),
silence(SI), block(BL), overcoming(OV), deflec-
tion(DE), block-support(B-S), yesandquestion(Y-
Q), ignored(IG). Past research (Sonalkar et al.,
2013) has shown these symbols to be effective in
revealing patterns of design team interaction.

Figure 1: IDN dialogue acts and their symbols

While some of these dialogue acts are intuitive,
several of the labels are not at first clear or pos-
sess significant nuance. In particular, Move is an
expression that seeks to move the conversation in a
given direction. In addition, Deflection is a move
in a very specific context; it must be in response
to a block, and has to present an alternative direc-

tion from the previous move. An important take-
away from this specification is that the IDN di-
alogue acts are explicitly context dependent at a
discourse-level; that is, the criteria for many of the
DAs do not stand on their own but are intelligi-
ble only in reference to the DAs of the preceding
sentences. It is also important to note that because
these DAs are tailored to the context of design in-
teractions, it is difficult to compare results with ex-
isting literature on the SWDA or MRDA datasets.

3.3 Data Preprocessing
No data preprocessing is conducted on the IDN
data for the CRF model. For the LSTM model,
we represent each word in a sentence with its 300-
dimensional word embedding, pre-trained using
Facebook’s fastText approach on a large corpus of
Wikipedia files. Principal component analysis is
then conducted on the embeddings to reduce di-
mensionality from 300 to 150. Finally, the dataset
is partitioned with a 70% training, 15% validation
and 15% testing split.

3.4 Biases and Noise
As can be seen in figure three, the dialogue act
distribution of the IDN dataset is heavily skewed,
with the top five labels accounting for nearly all
of the samples. This of course poses challenges
in that only these five most prevalent classes will
be learned by a model as there are simply too few
instances of the remaining labels. In addition, be-
cause the dataset is transcribed by multiple profes-
sionals, there are slight variations in the transcrip-
tions of the speech into text. For instance, silence
may be transcribed as an empty sentence or with
contextual denotation in brackets; this decision is
at the discretion of the transcriber and sometimes
varies.

Figure 2: Frequency of IDN dialogue acts



4 Model

As noted in section 2, one of the most critical
themes across successful models on both the IDN
and SWDA dataset has been the incorporation of
information on context dependencies at the dis-
course level. This theme was at the core of the
innovative model developed by Kalchbrenner and
Blunsom (2013), which introduced the notion of
an architecture with double sequencing in which
a model at the sentence level feeds sentence rep-
resentations into a model at the discourse level.
This theme was also critical in producing the best
performance thus far on the IDN dataset (Roman,
2017). Intuitively, this finding makes sense, as a
sentence in a conversation can only be fully un-
derstand in the context of the dialogue as a whole.
This is particularly true with regard to design team
collaborations, as team members must work to-
gether at a high level to achieve success, and IDN
labels are explicitly dependent upon the labeling
of preceding sentences. We thus develop CRF and
LSTM models due to the ability of these models
to effectively capture sequential information.

4.1 Conditional Random Field

A CRF is a Markov network over variables X∪Y
which specifies a conditional distribution

where phi is a factor that describes the joint prob-
abilities between X and Y. In turn, a Markov field
is a probability distribution p over variables x1,...,
xn defined by an undirected graph G in which a
node corresponds to variable xi. The probability p
has the form

where C denotes the set of fully connected sub-
graphs of G, and Z is a normalizing constant that
ensures that probability distributions add up to 1.

In the case of CRFs for dialogue act classifica-
tion tasks, the feature representation of a sentence
is the evidence which then enables the CRF model
to perform probabilistic inference to calculate the
argmax(label, evidence) and output the label with
the highest probability as the DA prediction.

Feature Engineering

Despite having access to the IDN corpus videos,
we use only textual features in our model due to
previous findings (Chan et al., 2015) on the IDN
dataset that the use of audio features decreases
model accuracy. The representation of each sen-
tence thus consists of the following 10 features:

• First two words, filtering stop words.
• Last two words, filtering stop words.
• Last two words of the preceding sentence.
• First two words of the succeeding sentence
• Sentence length.
• ”Long” sentence.
• Punctuation of current sentence.
• Punctuation of preceding sentence.
• Punctuation of succeeding sentence.
• Latent summary of sentence.

The first five features build on findings of use-
ful features in previous machine learning DA clas-
sification approaches (Ang et al., 2005). Before
obtaining the first two and last two words of the
sentence, we filter out stop words so as to increase
the likelihood of capturing words with a greater
impact upon the sentence meaning. For each of
the first four features, sentences with less than two
words are padded with the empty string. The final
feature calculates sentence length by word count.

Closely related to the length of the sentence is a
binary feature indicating whether or not a sentence
is considered ”long”. This feature was crafted to
help distinguish labels that tended to correspond
to sentences consistently longer than other sen-
tences in the transcripts, such as the ”yesand” la-
bel. The current, preceding, and succeeding punc-
tuation are included for the primary purpose of
distinguishing questions from other dialogue acts.

Finally, we incorporate the ”latent summary” of
a sentence. The latent summary of a sentence is
the single word from the sentence with a word em-
bedding closest to the mean embedding of the sen-
tence overall, obtained by calculating the mean of
the sum the embeddings of every word in the sen-
tence. The IDN id of this word is then included
in the feature representation. By incorporating la-
tent summaries, we hoped to leverage the intuition
captured in word embeddings for the CRF model
by providing a feature that captures which word
most reflects the overall meaning of a sentence.



4.2 Discourse Level LSTM

Input
In addition to the CRF model, we implement a
single-layer LSTM at the discourse level. Un-
like the double-sequencing architecture developed
by Kalchbrenner and Blunsom (2013) and further
explored in additional studies (Lee and Dernon-
court, 2016; Ji et al., 2016) in which a sentence
level deep learning model feeds sentence represen-
tations into a separate discourse-level model for
prediction, this model takes as input vector repre-
sentations of sentences derived from the summa-
tion of the 150-dimensional fastText embeddings
(detailed in section 3.3) for the words in that sen-
tence. The decision to use word embedding sums
rather than to learn sentence representations was
made because it was determined that it would be
difficult, given the size of the IDN dataset, to learn
parameters for both sentence representations and
DA classifications. Finally, our model makes pre-
dictions utilizing a sentence depth of two, meaning
representations for the preceding two sentences
are incorporated into classifications.

Architecture
We define the LSTM cell at time step t to be a set
of vectors in Rd. The formal definition of the cell
is specified in the equations of figure three.

Figure 3: LSTM definition

In these equations, Xt is the d dimensional vector
input at time t, Whh and Whx are weight matrices
and σ represents the sigmoid function. Conceptu-
ally, it is the input gate, ft is the forget gate, ot
is the output gate, ct is the memory cell, and ht
is the hidden state. The interaction between these
gates in the LSTM cell structure is demonstrated
in figure 4.

Figure 4: LSTM cell structure and parameters

We utilize a simple single-layer LSTM rather
than a multi-layer LSTM as implemented in previ-
ous studies on the IDN dataset (Roman, 2017) be-
cause multiple LSTM layers are primarily used to
capture longer dependencies between input items.
However, previous work (Kalchbrenner and Blun-
som, 2013; Ji et al., 2016) on the development
of discourse-level context dependent models has
found optimum performance achieved in these
models when sequential information from only the
previous one or two sentences is incorporated into
predictions. This finding was reflected in per-
formance testing on the development set for our
LSTM model as well, as performance with the in-
corporation of information beyond two sentences
previous to the current sentence. Therefore we
maintain only a single layer LSTM since the range
of dependencies we seek to capture is fairly short.

Hyper-parameters
The primary hyper-parameters tuned for our
model was the number of hidden dimensions
across the following range: {250, 500, 750,
1000}. We also interrogated the use of three acti-
vation functions: rectified linear activation, scaled
exponential linear activation, and hyperbolic tan-
gent. The best combination of these parameters
selected via grid search was utilized for experi-
ments. Training procedure was monitored by val-
idation set performance. We found around 200
epochs were needed to achieve sufficient learning.

5 Results

5.1 Baseline
Given our motivation of incorporating sequential
information at the discourse level in DA predic-
tion on the IDN dataset, we choose as our baseline
the non-sequential version of the CRF, logistic re-
gression. Logistic regression is a special case of a
CRF where the sequences are of length 1.



Figure 5: Graphical representation of logistic re-
gression and conditional random field models

Input to the logistic regression model consists of
a bag of words approach. Every word in the IDN
vocabulary is assigned an index from zero to the
vocabulary size. A sentence is then represented by
a sparse vector of the same size as the vocabulary
in which the ith index represents the frequency at
which the ith word in the vocabulary appears.

5.2 Evaluation
Accuracy has served as the standard metric for
performance throughout dialogue act classifica-
tion literature on both the SWDA and IDN
datasets. Because of this established standard,
accuracy is the primary metric provided in our
study as well. However, given that accuracy does
not provide per-class performance granularity nor
control for size imbalances in the classes, accuracy
seems a poor metric for this task. These draw-
backs are especially relevant given the unbalanced
nature of the dataset detailed in section 3.4.

Therefore we provide the weighted F1 score as
well. We choose the weighted F1 score over the
macro-averaged F1 score because, as depicted in
figure two, several of the classes (ignored, deflec-
tion, etc.) have so few counts as to be nearly
impossible for the model to learn. The low F1

scores for these labels would then distort the over-
all macro-averaged score. One approach to this
difficulty in past work (Chan et al., 2015) has been
to only report performance on the top five labels.

Table 1: Model Accuracies and F1 Scores

Table 2: CRF per-label performance scores

Table 3: LSTM per-label performance scores

6 Analysis

6.1 Model Comparison

As seen in table one, the CRF performs the best of
all models developed for the IDN dataset so far
by a significant margin with a 79.0% test accu-
racy, constituting an absolute gain of 10.1% over
the logistic regression baseline. Perhaps more in-
formative, however, is the 0.766 F1 score of the
CRF, which represents a 100% relative improve-
ment over the majority baseline and a 10% relative
improvement over the logistic regression baseline.
The discourse-level LSTM just surpasses the per-
formance of the context-dependent bidirectional
multi-layer LSTM, but still lags significantly be-
hind the CRF. The gap between the CRF and the
LSTM is reinforced by the superior precision and
recall performance of the CRF on every label other
than ”yesand” in the IDN dataset, as displayed in
tables two and three.



6.2 Comparison to Previous Work

In the same study in which Roman (2017) im-
plements the bidirectional LSTM against which
comparisons are made above, he also details the
implementation of unidirectional and bidirectional
multi-layer LSTMs that do not take discourse-
level context dependencies into account. Rather,
these models make a prediction for a sentence
by processing that sentence word-by-word without
the incorporation of information at the discourse
(i.e. inter-sentence) level. As demonstrated in ta-
ble 1, both the LSTM developed by Roman and
the LSTM developed in this study that incorpo-
rated sequential information at the discourse-level
outperformed the LSTM models that did not. This
trend reinforces the primary theme drawn across
previous work in the literature review; namely,
that the incorporation of discourse-level sequen-
tial information is critical for the development of
effective dialogue act classifiers.

However, even the LSTMs that incorporate
discourse-level sequential information fail to ob-
tain maximum performance within even 5% of the
performance of the CRF. The 8% relative improve-
ment of the CRF in comparison to the best of the
LSTM models provides supporting evidence for a
driving hypothesis behind this study; namely, that
the smaller size of the IDN dataset would place
particular pressure on deep learning approaches
and would be best handled by a non-deep ma-
chine learning model. Results indicate that even
as the field of dialogue act classification has been
swept with the ”deep-learning tsunami” (Man-
ning, 2015) throughout NLP, there are still criti-
cal areas in which traditional machine learning ap-
proaches are capable of superior performance.

6.3 Feature Analysis

Many of the top features learned by the CRF mod-
els are to be expected, particularly cues regard-
ing question punctuation and transcript denotation
for humour and silence. More interesting to note
are the states missing from the table - overcoming,
deflection, block-support, yesandquestion, and ig-
nored are absent, while block and yesand each
make a single appearance. This is likely due to
two factors: the most clear factor is the dataset
imbalance discussed previously, in which the five
most common IDN labels account for over 97% of
all sentences in the corpus. However, ”yesand” is
the fourth most common label in the dataset with

Table 4: CRF top 20 positive features

over 10% of the sentence share, and thus the model
should have had sufficient opportunity to learn fea-
tures for this label. One potential reason it did not
is that sentences labeled ”yesand” lack the type of
distinctive notation or characteristics that distin-
guish other labels such as question, humour, and
support. Thus although the yesand label accounts
for over 10% of sentences in the corpus, it could
be the case that the CRF fails to distinguish be-
tween sentences labeled ”yesand” and more com-
mon sentences labeled ”move”, which dominates
the dataset with nearly 50% of the share of the to-
tal number of sentences.

6.4 Error Analysis

The hypothesis articulated above is borne out by
error analysis. As can be seen in tables two and
three, both the CRF and LSTM models struggled
with predicting the yesand label, earning F1 scores
of .03 and .09, respectively, on instances of those
labels in the test set. The CRF, in particular,
achieves only a 1.7% recall of yesand labels in the
test set, indicating the yesand prediction is almost
never made. When analyzing what predictions
the CRF makes instead, we found that 84.2% of
yesand misclassifications were incorrectly labeled
as move, with the support and question labels ac-
counting for the remaining misclassifications.



It is thus clear that the models are mostly inca-
pable of distinguishing yesand labels from move
labels. This limitation makes sense in context of
the close relationship between these two labels
specified in the IDN coding manual: ”A ’yes and’
response...derives from the external [group space],
is modified and extended in the internal [men-
tal space] and is again expressed in the external.
The ’yes and’ response thus builds on the previ-
ous move that was expressed.” (Sonalkar et al.,
2013) The complex internal-external processing
the yesand label seeks to capture, in essence, spec-
ifies a sentence that accepts the content of the pre-
vious move and adds on to it.

Because a yesand sentence adds on to a previ-
ous move, there are often no clear dialogue mark-
ers or recurring words or phrases that distinguish a
yesand sentence from a move sentence. Consider
the misclassified yesand sentences in figure six.

Figure 6: Yesand label misclassification examples

The last two examples showcase yesand exam-
ples that begin by explicitly acknowledging the
idea from the previous sentence (a ”move” sen-
tence) before proceeding to expand on that idea in
some way. This pattern is common in the dataset.
However, more common are the types of sentences
depicted in the first two examples in which no
explicit acknowledgement of the previous idea is
provided. Rather, the sentence’s relationship to
the previous idea is understood to be implicit, re-
sulting in no explicit textual cues that the yesand
sentence builds on the ideas of the previous move.

This model limitation currently does not im-
pede strong performance from the CRF, as the
model still outperforms all LSTM approaches and
matches state-of-the-art accuracies achieved on
the SWDA and MRDA datasets as well. However,
it raises questions about the ability of the model to
maintain its performance as the IDN dataset con-
tinues to grow and labels such as block, block-
support, deflection, and overcoming become more

common in the corpus. As representation of these
labels increases, the model will face similar chal-
lenges with label pairs such as question and block,
support and block-support, and more pairs that
cannot be known until the corpus expands.

7 Conclusion

In this article we have presented a CRF and LSTM
approach to sequential dialogue act classification
on the IDN dataset. We demonstrate that the in-
corporation of sequential information at the dis-
course level yields superior performance on the
IDN dataset as has been found in previous work
on the SWDA and MRDA datasets. Our LSTM
model matches the performance of the best pre-
existing LSTM for IDN, while our CRF model
achieves state-of-the-art results on the IDN dataset
by a margin of more than 5% over other models.

7.1 Future Work

There are several opportunities for expansion on
the current work. The first and most direct path of
exploration would be to utilize GLoVe word em-
beddings rather than fastText for sentence repre-
sentations in the LSTM model and compare the
results to those achieved in this study, as GLoVe
embeddings could potentially provide richer in-
puts for the LSTM model that have a significantly
positive impact upon LSTM performance.

Another area of expansion could involve ex-
ploring methods of augmenting the smaller IDN
dataset with with other, larger dialogue act
datasets - such as the SWDA or MRDA corpora
- through some sort of distant supervision. Roman
(2017) begins to explore this direction in his 2017
study in which one of the components of input for
his LSTM models consists of 42-length vectors
output by a secondary SWDA-trained LSTM for
each sentence in the IDN corpus. This approach
can be used as a starting point to innovate methods
of integrating the IDN dataset with other corpora.

Finally, as discussed in error analysis, develop-
ing a set of features capable of helping the CRF
model detect and track implicit inter-sentence re-
lationships (i.e. relationships that aren’t cued by
specific words or phrases) would be critical.
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